

The RAMDISK Storage Accelerator
A Method of Accelerating I/O Performance on HPC

Systems Using RAMDISKs

Tim Wickberg, Christopher D. Carothers
wickbt@rpi.edu, chrisc@cs.rpi.edu

Rensselaer Polytechnic Institute

mailto:wickbt@rpi.edu
mailto:chrisc@cs.rpi.edu

Background

● CPUs performance doubles every 18 months
● HPC system performance follows this trend

● Disk I/O throughput doubles once every 10 years

● This creates an exponentially widening gap
between compute and storage systems
● We can't continue to throw disks at the problem to keep

current compute to I/O ratio intact
● More disks not only cost more, but failure rates also

cause problems

RAMDISK Storage Accelerator

● Introduce new layer to HPC data storage – the
RAMDISK Storage Accelerator (RSA)

● Functions as a high-speed data staging area
● Allocated per job, in proportion to compute

resources
● Requires no application modification, only a few

settings in job scripts to enable

RSA

● Aggregate RAMDISKs on RSA nodes together
using a parallel filesystem
● PVFS in our tests
● Lustre, GPFS, Ceph and others possible as well

● Parallel RAMDISK is exported to I/O nodes in
the system

Bind mount

● mount ­o bind /rsa /place/on/diskfs

● Application sees a single FS hierarchy, doesn't
need to know if the RSA is functional or not
● Decouples RSA from the compute system, allows

the application to function regardless of RSA
availability

Scheduling

● Set aside half the I/O nodes for active jobs, and
the other half for jobs that have finished or will
start soon

● Allocate RSA nodes in proportion to the
compute system

● Data moves asynchronous to job execution,
and frees the compute system up sooner.

Example job flow

● Before job begins, selected as next-likely to start.
● Stage data in to RSA.

● Job Starts on compute system
● Reads data in from RSA

● Checkpoints to RSA
● Job execution finishes

● results written to RSA

● Compute system released
● RSA pushes results back to disk storage after compute

system has moved on to the next job

Compare to traditional job flow

● Initial load: 15 minute read in from disk
● Checkpoints: 10 minutes per checkpoint, once

an hour, 24 hour job run
● Results back out: 10 minutes
● 225 minutes spent on I/O

RSA

● Initial load: happens before compute job starts
● Checkpoints: 1 minute each
● Results out: 1 minute to RSA
● Afterwards: results from RSA back to disk

storage
● 25 minutes spent on I/O

● Saved 200 minutes on the compute system
● Asynchronous data staging seems likely for any

large scale system at this point

Test System

● 1-rack Blue Gene/L
● 16 RSA nodes (borrowed from another cluster),

32GB RAM each
● Due to networking constraints, a single Gigabit

Ethernet link connects the RSA to the BG/L
functional network.
● Bottleneck evident in results.

Example RSA Scheduler

● RSA scheduler implements the scheduling,
RSA construction/destruction, data staging

● Proof-of-concept constructed alongside the
SLURM job scheduler

Test Results

● More details in the paper, but briefly:
● Example test: file-per-process, 2048 processes, 2GB data total
● GPFS disk: 1100 seconds to write out test data

– High contention exacerbates problems with GPFS metadata locking

● RSA: 36 seconds to write to RSA
– 222 seconds after compute system is released to push data back to GPFS

● Data staged back from single system avoids GPFS contention issues

● 2800% speedup from the application / compute system's
viewpoint

Future Work

● Full-scale test system to be implemented @
CCNI in the next six months

● 1-rack (200 TFLOPS) Blue Gene/Q
● 32 RSA Nodes, each 128GB+ RAM, 4TB+ total.
● FDR (56Gbps) Infiniband fabric

Extensions

● RAM is faster, but SSDs are catching up, and
provide better price/capacity.
● Everything shown here can extend to SSD-backed

systems as well.

● Overhead in Linux memory management.
● Data copied in-memory ~5 times on the way in or out,

this could be reduced with major modification to the
kernel. Or, perhaps a simplified OS could be developed
to support this.

● Handle RSA scheduling directly in job scheduler,
rather than external

Conclusions:

● I/O continues to fall behind compute capacity
● The RSA provides a method to mitigate this

problem
● Frees the compute system faster, reduce pressure

on disk storage I/O

● Possible to integrate into HPC systems without
changing applications

Thank You

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

